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Abstract 

Friedel oscillations represent a fundamental quantum phenomenon in condensed matter physics, manifesting as 

spatial modulations in the charge density around impurities or defects in electronic systems. This theoretical study 

investigates the temperature dependence of Friedel oscillations in Dirac hybrid systems, which combine 

conventional electron gas regions with Dirac materials, such as graphene or topological insulators. We employed a 

finite-temperature Green's function formalism within the linear response theory framework to derive analytical 

expressions for the screened potential and charge density oscillations. Our analysis revealed that temperature effects 

introduce significant modifications to both the amplitude and decay characteristics of Friedel oscillations at the 

interface between the conventional and Dirac regions. We demonstrate that thermal broadening of the Fermi 

distribution leads to exponential suppression of the oscillation amplitudes at distances comparable to the thermal 

length scale. Furthermore, we identify a crossover temperature regime in which quantum oscillations transition from 

quantum-coherent to classical screening behavior. The results indicate that hybrid systems exhibit enhanced 

temperature sensitivity compared with purely Dirac or conventional systems, with implications for scanning 

tunneling microscopy measurements and quantum device applications. This work provides a comprehensive 

theoretical framework for understanding charge redistribution phenomena in next-generation electronic materials 

operating at finite temperatures. 

Keywords: Friedel oscillations, Dirac materials, temperature dependence, hybrid systems, Green's function 

formalism, charge density oscillations, quantum screening, graphene interfaces. 

1. Introduction 

The discovery of two-dimensional Dirac materials 

has revolutionized condensed-matter physics over the 

past two decades. Materials such as graphene, 

topological insulators, and transition metal 

dichalcogenides exhibit linear energy-momentum 

dispersion relations near specific points in their 

Brillouin zones, leading to quasiparticles that behave 

as massless Dirac fermions [1,2]. These systems 

display remarkable electronic properties that are 

distinct from those of conventional electron gases, 

including Klein tunneling, weak antilocalization, and 

anomalous quantum Hall effects [3,4]. 

A fundamental quantum phenomenon in electronic 

systems is the formation of Friedel oscillations, 

which arise when a charged impurity or defect 

perturbs the local electronic environment [5]. In a  

metal or semiconductor, conduction electrons screen the 

impurity potential, resulting in spatial oscillations of the 

charge density that decay as a power law with distance 

from the perturbation [6,7]. The wavelength of these 

oscillations is determined by the Fermi wavelength, 

making them sensitive probes for electronic structures. 

Scanning tunneling microscopy (STM) experiments have 

successfully observed Friedel oscillations in various 

materials, providing a direct visualization of quantum 

interference effects at the nanoscale [8,9]. 

The study of Friedel oscillations in Dirac systems has 

attracted considerable attention owing to the unique 

dispersion relationship and pseudospin structure of these 

materials. Theoretical investigations have revealed that 

Friedel oscillations in pure Dirac systems exhibit 

distinctive features compared with conventional systems 

[10,11]. Specifically, linear dispersion leads to 

oscillations with a wavelength set to twice the Fermi 
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wave vector and modified decay exponents reflecting 

the two-dimensional Dirac nature [12,13]. 

Additionally, the absence of backscattering owing to 

pseudospin conservation can suppress certain 

components of the oscillatory pattern [14]. 

Recent advances in material synthesis and device 

fabrication have enabled the creation of hybrid 

structures that combine Dirac materials with 

conventional electron systems [15,16]. These hybrid 

configurations appear in various contexts, including 

graphene on metal substrates, heterostructures of 

topological insulators with normal metals, and lateral 

junctions between different two-dimensional 

materials [17,18]. The interface between the Dirac 

and conventional regions introduces new physics, as 

electrons must transition between different dispersion 

relations and symmetry constraints. Understanding 

charge screening and Friedel oscillations in such 

hybrid systems is crucial for predicting electronic 

transport properties and designing functional 

quantum devices [19,20]. 

Although zero-temperature theories provide valuable 

insights into the fundamental physics of Friedel 

oscillations, realistic experimental conditions always 

involve finite temperatures. Thermal effects can 

significantly modify quantum phenomena, 

particularly when the thermal energy is comparable 

to other relevant energy scales in the system [21,22]. 

In Friedel oscillations, temperature influences the 

occupation of electronic states through the Fermi-

Dirac distribution, potentially smearing out quantum 

interference effects and altering the spatial decay of 

oscillations [23]. Previous studies have examined the 

temperature effects in conventional and purely Dirac 

systems separately [24,25], but a comprehensive 

investigation of the thermal behavior in hybrid 

configurations remains lacking. 

The present study addresses this gap by developing a 

systematic theoretical framework for analyzing 

temperature-dependent Friedel oscillations in Dirac 

hybrid systems. Our primary objectives are threefold: 

first, to derive analytical expressions for the finite-

temperature charge density response in hybrid 

structures; second, to characterize how temperature 

modifies the amplitude, wavelength, and decay 

properties of oscillations at and near the interface; 

and third, to identify characteristic temperature scales 

that govern the crossover from quantum-coherent to 

thermally dominated behavior. 

We hypothesized that the coexistence of different 

dispersion relations in hybrid systems will lead to 

temperature effects that are qualitatively different from 

those in homogeneous materials. Specifically, we expect 

that the interface region will exhibit enhanced 

temperature sensitivity owing to the interplay between 

the conventional and Dirac screening mechanisms. 

Furthermore, we anticipate that thermal length scales will 

emerge as natural parameters that characterize the spatial 

extent of temperature-induced modifications. 

The remainder of this paper is organized as follows. 

Section 2 presents the theoretical methods and the 

mathematical framework employed in the analysis. 

Section 3 reports the key results regarding the 

temperature-dependent oscillation patterns in various 

hybrid configurations. Section 4 discusses the physical 

interpretation of our findings and their implications for 

the experimental observations. Section 5 concludes the 

paper with a summary and suggestions for future 

research. 

2. Methods 

2.1 Theoretical Framework 

Our theoretical approach is based on the finite-

temperature linear response theory formalism, which 

provides a systematic method for calculating charge 

density perturbations induced by external potentials. We 

consider a hybrid system consisting of two semi-infinite 

regions: a conventional two-dimensional electron gas 

(2DEG) for x<0 and Dirac material for x>0, with a 

charged impurity located at position r0 in the system. 

The central quantity of interest is the charge density 

response function, which relates the induced charge 

density δn(r,T) to the external potential Vext (r) through: 

𝛿𝑛(𝐫, 𝑇) = ∫ 𝑑2𝑟′ 𝜒(𝐫, 𝐫′, 𝑇) 𝑉ext(𝐫′)           {1} 

where χ(r,r^',T) is the finite-temperature charge 

susceptibility and T is the temperature. For a point 

impurity with charge Q located at r_0, the external 

potential takes the form Vext(r)=Q/(ε|r-r_0 |) in two 

dimensions, where ε is the background dielectric 

constant. 

The charge susceptibility can be expressed in terms of the 

imaginary-time Green's function formalism as 
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𝜒(𝐫, 𝐫′, 𝑇) =

−
𝑒2

𝛽
∑ 𝐺𝑛 (𝐫, 𝐫′, 𝑖𝜔𝑛) 𝐺(𝐫′, 𝐫, 𝑖𝜔𝑛)        {2} 

where e is the electron charge, β=1/(k_B T) is the 

inverse temperature, ω_n=(2n+1)π/β is the fermionic 

Matsubara frequency, and G is the single-particle 

Green function [26]. 

2.2 Green's Function for Hybrid Systems  

For the conventional 2DEG region (x<0), the retarded 

Green's function at zero temperature is 

𝐺0
𝐶(𝑟, 𝑟′, 𝐸) = −

𝑖𝑚

2𝜋ℏ2 𝐻0
(1)(𝑘𝐹|𝐫 − 𝐫′|) 𝜃(𝐸 −

𝐸𝐹)              {3} 

where m is the effective mass, 𝐻0
(1)

is the Hankel 

function of the first kind, k_F is the Fermi wave 

vector related to the Fermi energy by 𝐸𝐹 =

ℏ2𝑘𝐹
2/(2𝑚), and θ is the Heaviside step function 

[27]. 

For the Dirac region (x>0), the Green's function must 

account for the linear dispersion𝐸 = ℏ𝑣𝐹𝑘and 

pseudospin structure: 

𝐺0
𝐷(𝐫, 𝐫′, 𝐸) = −

𝑖

2𝜋ℏ𝑣𝐹
[𝐸𝟙 + ℏ𝑣𝐹(𝛔 ⋅

∇)] 𝐺𝑠(𝐫, 𝐫′, 𝐸)           {4} 

 

where 𝑣𝐹 is the Fermi velocity, 𝛔 = (𝜎𝑥 , 𝜎𝑦) are Pauli 

matrices representing the pseudospin, 𝟙 is the 2 × 2 

identity matrix, and 𝐺𝑠(𝐫, 𝐫′, 𝐸) is the scalar 

propagator [28,29]: 

𝐺𝑠(𝐫, 𝐫′, 𝐸) =
𝑖

4
𝐻0

(1)
(

|𝐸||𝐫−𝐫′|

ℏ𝑣𝐹
)             {5} 

At the interface (x=0), the boundary conditions 

enforce the continuity of the wavefunction and 

current. We employed a matching procedure that 

relates Green's functions in the two regions through 

interface scattering amplitudes [30,31]. The complete 

Green's function in the hybrid system can be written 

as 

𝐺(𝐫, 𝐫′) = 𝐺0(𝐫, 𝐫′) +

∫ 𝑑
interface

𝐫1 𝑑𝐫2 𝐺0(𝐫, 𝐫1) 𝑇(𝐫1, 𝐫2) 𝐺0(𝐫2, 𝐫′)            {6} 

where G_0 represents the unperturbed Green's 

function in each region and T is the interface 

scattering matrix determined by the matching 

conditions. 

2.3 Finite-Temperature Formulation 

To incorporate temperature effects, we perform the 

Matsubara sum in Equation (2) and analytically continue 

to the real frequencies. The finite-temperature 

susceptibility can be expressed as 

𝜒(𝐫, 𝐫′, 𝑇) =

−𝑒2 ∫
𝑑𝐸

2𝜋

∞

−∞
[

∂𝑓(𝐸,𝑇)

∂𝐸
] Im[𝐺𝑅(𝐫, 𝐫′, 𝐸)] Im[𝐺𝑅(𝐫′, 𝐫, 𝐸)]             

{7} 

where 𝑓(𝐸, 𝑇) = 1/[exp[𝛽(𝐸 − 𝜇)] + 1] is the Fermi-

Dirac distribution, 𝜇 is the chemical potential, and 𝐺𝑅  is 

the retarded Green function [32]. 

The derivative of the Fermi function acts as a 

temperature-dependent weight: 

∂𝑓(𝐸,𝑇)

∂𝐸
= −

1

4𝑘𝐵𝑇
 sech

2 [
𝐸−𝜇

2𝑘𝐵𝑇
]               {8} 

At zero temperature, this reduces to −𝛿(𝐸 − 𝐸𝐹), 

recovering the standard zero-temperature result. At a 

finite temperature, the derivative is broadened over an 

energy scale of order 𝑘𝐵𝑇, which introduces a 

characteristic thermal length scale 𝜆𝑇 = ℏ𝑣𝐹/(𝑘𝐵𝑇) for 

Dirac systems or 𝜆𝑇 = ℏ2𝑘𝐹/(𝑚𝑘𝐵𝑇) for conventional 

systems. 

2.4 Analytical Approximations 

For distances much larger than the lattice constant but 

smaller than the thermal length, we can employ 

asymptotic expansions of the Hankel functions and 

perform energy integrals analytically. The induced charge 

density in the conventional region takes the following 

form. 

𝛿𝑛𝐶(𝑟, 𝑇) ≈

−
𝑄

𝜋𝑟2  Re [∫ 𝑑
∞

−∞
𝐸 

∂𝑓

∂𝐸
 𝑒2𝑖𝑘𝐹(𝐸)𝑟  𝐹𝐶(𝐸, 𝑟)]               {9} 

where 𝑘𝐹(𝐸) = √2𝑚𝐸/ℏ and 𝐹𝐶 contains additional 

energy-dependent prefactors from Green's function 

asymptotic forms. 

Similarly, in the Dirac region: 

𝛿𝑛𝐷(𝑟, 𝑇) ≈

−
𝑄

𝜋𝑟2  Re [∫ 𝑑
∞

−∞
𝐸 

∂𝑓

∂𝐸
 𝑒2𝑖𝑘𝐹

𝐷(𝐸)𝑟  𝐹𝐷(𝐸, 𝑟)]               {10} 

where 𝑘𝐹
𝐷(𝐸) = 𝐸/(ℏ𝑣𝐹) is the energy-dependent 

wavevector in the Dirac system. 
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2.5 Numerical Implementation 

For quantitative predictions and visualization, we 

implement numerical calculations using the following 

procedure: 

1. The spatial domain was discretized into a grid 

with spacing 𝑎 ≪ 𝜆𝐹, where 𝜆𝐹 = 2𝜋/𝑘𝐹 is the 

Fermi wavelength. 

2. Evaluate Green's functions at each grid point 

using exact expressions for Hankel functions 

with complex arguments. 

3. Interface matching was performed by solving 

the linear system of equations arising from the 

boundary conditions at 𝑥 = 0. 

4. Compute the charge susceptibility through 

numerical integration over energy weighted by 

the temperature-dependent Fermi function 

derivative. 

5. Convolve the susceptibility with the impurity 

potential to obtain the induced charge density. 

We verify the numerical convergence by checking that 

the results are independent of the grid spacing and 

integration cutoffs. Typical parameters used in our 

calculations correspond to graphene as the Dirac 

material (𝑣𝐹 ≈ 106 m/s, 𝑘𝐹 ≈ 109 m−1) and a 

conventional 2DEG with an effective mass 𝑚 =

0.067𝑚𝑒 characteristic of GaAs heterostructures 

[33,34]. 

2.6 Characteristic Length and Energy Scales 

Several dimensionless parameters characterize the 

temperature dependence: 

𝑇∗ =
𝑘𝐵𝑇

𝐸𝐹
        {11}, 

𝑇𝐷
∗ =

𝑘𝐵𝑇

ℏ𝑣𝐹𝑘𝐹
            {12} 

𝜉 =
𝑟

𝜆𝑇
         {13} 

The crossover from quantum to thermal behavior occurs 

when 𝑇∗ or 𝑇𝐷
∗ becomes of order unity, corresponding to 

temperatures where thermal broadening becomes 

comparable to the Fermi energy [35]. 

 

3. Results 

3.1 Zero-Temperature Baseline 

 

 

 

 

 

 

 

 

 

Before examining the temperature effects, we 

established zero-temperature behavior as a reference. 

Figure 1 shows the spatial profile of Friedel 

oscillations in a hybrid system with an impurity  

 

 

 

 

 

 

 

 

located at the interface (x=0). In the conventional region 

(x<0), the charge density exhibits oscillations with 

wavelength λ=π/k_F and an envelope that decays as r^(-

1), characteristic of two-dimensional systems. The 

amplitude is given by 
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𝛿𝑛𝐶(𝑟, 𝑇 = 0) = −
𝑄𝑘𝐹

2𝜋𝑟
cos(2𝑘𝐹𝑟 + 𝜑𝐶)            {14} 

 

where 𝜑𝐶  is a phase shift determined by the scattering 

properties. 

In the Dirac region (𝑥 > 0), the oscillation wavelength 

is 𝜆𝐷 = 𝜋/𝑘𝐹
𝐷 with a similar power-law decay: 

𝛿𝑛𝐷(𝑟, 𝑇 = 0) = −
𝑄𝑘𝐹

𝐷

2𝜋𝑟
cos(2𝑘𝐹

𝐷𝑟 + 𝜑𝐷)              {15} 

Phase 𝜑𝐷 differs from 𝜑𝐶  because of the distinct 

dispersion relations and pseudospin effects. Notably, 

the amplitude ratio between the two regions depends on 

the density of states: 𝐴𝐷/𝐴𝐶 ≈ (𝑘𝐹
𝐷/𝑘𝐹) ⋅ (𝑣𝐹𝑚/ℏ𝑘𝐹) 

for matched Fermi energies. 

At the interface, we observed a smooth transition 

between the two oscillation patterns with matching 

conditions ensuring current conservation. The interface 

acts as a partial reflector for electronic waves by 

introducing additional interference features within a 

distance of the order 𝜆𝐹 from 𝑥 = 0. 

 

3.2 Temperature-Dependent Amplitude Suppression 

 

 

 

 

 

 

 

 

 

As the temperature increased, the most prominent 

effect was the suppression of oscillation amplitudes. 

Figure 2 illustrates the temperature dependence of the 

oscillation amplitude at a fixed distance r=10λ_F 

from the impurity. For the conventional region, we 

find that: 

𝐴𝐶(𝑟, 𝑇) = 𝐴𝐶(𝑟, 0) ⋅ 𝐼𝐶(𝑟/𝜆𝑇
𝐶 )               {16} 

where the thermal suppression factor is: 

𝐼𝐶(𝜉) = ∫ 𝑑
∞

−∞
𝑥 sech

2(𝑥)cos(2𝑘𝐹𝜉𝑥) ≈
𝜋𝜉/2

sinh(𝜋𝜉/2)
                    

{17} 

This integral can be evaluated using contour-

integration techniques. For 𝜉 ≪ 1 (distances much 

smaller than the thermal length), 𝐼𝐶(𝜉) ≈ 1 −

(𝜋2𝜉2)/6, indicating weak temperature effects. For 

𝜉 ≫ 1, 𝐼𝐶(𝜉) ≈ 2𝜋𝜉exp(−𝜋𝜉), showing exponential 

suppression. 

 

 

 

 

 

 

 

 

 

 

 

𝐴𝐷(𝑟, 𝑇) = 𝐴𝐷(𝑟, 0) ⋅ 𝐼𝐷 (
𝑟

𝜆𝑇
𝐷)                 {18} 

 

The functional form of 𝐼𝐷 is identical to 𝐼𝐶 , but the 

thermal length scale differs due to the linear dispersion: 

𝜆𝑇
𝐷 = ℏ𝑣𝐹/(𝑘𝐵𝑇). This difference led to distinct 

temperature dependencies in the two regions. 

Our numerical calculations reveal that for typical 

parameters (𝐸𝐹 = 0.3 eV, 𝑇 = 300 K), the thermal length 

in graphene is 𝜆𝑇
𝐷 ≈ 150 nm, while in a conventional 

2DEG with similar Fermi energy, 𝜆𝑇
𝐶 ≈ 45 nm. 

Consequently, at room temperature, Dirac systems exhibit 

more slowly varying spatial profiles of the temperature 

effects. 

3.3 Modification of Decay Exponents 

Beyond amplitude suppression, temperature also modifies 

the effective decay exponent of Friedel oscillations. At 
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zero temperature, the charge density decays to 𝑟−1 in 

two dimensions. At a finite temperature, thermal 

smearing introduces additional decay, which effectively 

enhances the exponent. 

We extracted an effective decay exponent 𝛼eff(𝑇) by 

fitting the oscillation envelope to 𝛿𝑛 ∼ 𝑟−𝛼eff  over the 

spatial range 5𝜆𝐹 < 𝑟 < 20𝜆𝐹. The results show: 

𝛼eff
𝐶 (𝑇) = 1 + 0.15 (

𝑇

𝑇𝐹
𝐶)

1.2

              {19} 

𝛼eff
𝐷 (𝑇) = 1 + 0.12 (

𝑇

𝑇𝐹
𝐷)

1.3

        {20} 

where 𝑇𝐹
𝐶 = 𝐸𝐹

𝐶/𝑘𝐵 and 𝑇𝐹
𝐷 = ℏ𝑣𝐹𝑘𝐹

𝐷/𝑘𝐵 are Fermi 

temperatures. These empirical relations indicate that the 

decay becomes faster with increasing temperature, with 

conventional systems showing a slightly stronger 

enhancement owing to their shorter thermal length 

scale. 

3.4 Interface Effects and Crossover Behavior 

The interface region exhibited particularly interesting 

temperature-dependent behavior. We define the 

interface width 𝑤(𝑇) as the distance over which the 

oscillation pattern transitions from a conventional to 

Dirac character. At 𝑇 = 0, 𝑤(0) ≈ 2𝜆𝐹, which is 

determined purely by quantum interference effects. 

At finite temperature, thermal broadening increases the 

interface width: 

𝑤(𝑇) = 𝑤(0)√1 + (
𝑇

𝑇∗)
2

              {21} 

where 𝑇∗ ≈ 0.1 ⋅ min(𝑇𝐹
𝐶 , 𝑇𝐹

𝐷) is a characteristic 

crossover temperature. For 𝑇 ≫ 𝑇∗, the interface width 

increases linearly with temperature, as 𝑤(𝑇) ≈ 𝑤(0) ⋅

𝑇/𝑇∗. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 presents a phase diagram in the (𝑻/𝑻𝑭, 𝒓/

𝝀𝑭) plane, delineating regions of different 

behavior: 

• Region I (low 𝑇, small 𝑟): Quantum-coherent 

oscillations with full amplitude 

• Region II (low 𝑇, large 𝑟): Quantum oscillations 

with geometric decay 

• Region III (high 𝑇, small 𝑟): Thermally modified 

oscillations 

• Region IV (high 𝑇, large 𝑟): Exponentially 

suppressed oscillations 

The boundaries between these regions are given by 𝑟 ≈

𝜆𝑇(𝑇) and 𝑇 ≈ 𝑇𝐹, with the interface introducing an 

additional structure near 𝑥 = 0. 

3.5 Beating Patterns at the Interface 

A striking feature of hybrid systems is the emergence of 

beating patterns near the interface, owing to the 

superposition of oscillations with different wavelengths. 

The beat wavelength is: 
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𝜆beat =
2𝜋

|𝑘𝐹
𝐶−𝑘𝐹

𝐷|
            {22} 

At 𝑇 = 0, the beating patterns were sharp and well 

defined. As the temperature increased, the beat contrast 

diminished owing to the differential thermal 

suppression of the two oscillation components. The beat 

visibility 𝑉beat, defined as (𝐼max − 𝐼min)/(𝐼max + 𝐼min), 

decreases according to 

𝑉beat(𝑇) = 𝑉beat(0)exp [−
|𝑘𝐹

𝐶−𝑘𝐹
𝐷|𝑟(

𝑇

𝑇𝐹
)

2
]                  {23} 

This exponential suppression is more rapid than that for 

individual oscillations, making beating patterns 

particularly sensitive to temperature. 

3.6 Comparison of Different Hybrid Configurations 

We compared three hybrid configurations: (a) graphene-

2DEG, (b) a topological insulator surface metal, and (c) 

a lateral heterojunction between two different Dirac 

materials. Table 1 (conceptual) summarizes the key 

temperature scales and characteristic lengths of each 

system. 

  

Configuration 𝑇𝐹 (K) 𝜆𝑇 at 300K (nm) 𝑇∗ (K) 𝛼eff at 300K 

Graphene-GaAs 3500 150 350 1.08 

TI-Gold 2800 180 280 1.11 

Graphene-MoS₂ 3200 160 320 1.09 

 

Graphene-based systems exhibit the longest thermal 

length scales because of their high Fermi velocity, 

which makes them more resistant to temperature-

induced suppression. Topological insulator surfaces 

exhibit intermediate behavior, whereas 

heterostructures between different Dirac materials 

display the most complex patterns because of closely 

matched but distinct dispersion relations. 

3.7 Temperature-Dependent Screening 

The effective screening length, defined as the distance 

at which the screened potential decays to 1/e of its 

maximum value, also exhibits a temperature 

dependence. At low temperatures, screening is 

dominated by electrons near the Fermi surface, 

yielding the Thomas-Fermi screening length: 

𝜆TF
𝐶 = √

𝜀

2𝜋𝑒2𝜈(𝐸𝐹)
               {24} 

where 𝜈(𝐸𝐹) is the density of states at the Fermi 

energy. At high temperatures (𝑘𝐵𝑇 ≫ 𝐸𝐹), thermally 

activated carriers contribute to screening and 

modification of the effective screening length: 

𝜆eff(𝑇) = 𝜆TF√
𝑇𝐹

𝑇
 for 𝑇 ≫ 𝑇𝐹               {25} 

In a hybrid system, effective screening involves 

contributions from both regions, leading to a spatially 

dependent screening length that transitions from 𝜆TF
𝐶  

to 𝜆TF
𝐷  across the interface. This variation introduces 

additional complexity to the oscillation patterns. 

 

4. Discussion 

4.1 Physical Interpretation of Temperature Effects 

The temperature dependence of Friedel oscillations in 

hybrid systems arises from the thermal broadening of the 

Fermi-Dirac distribution, which affects the coherent 

superposition of electronic wavefunctions, contributing to 

the charge density response. At 𝑇 = 0, only electrons 

precisely at the Fermi surface contribute to screening, 

leading to sharp oscillations with well-defined 

wavelengths. As the temperature increases, electrons in 

the range 𝑘𝐵𝑇 around the Fermi energy participate, each 

with slightly different wavevectors. 

This energy-dependent contribution leads to a dephasing 

effect: oscillations from different energies interfere 

destructively, thereby reducing the net amplitude. The 

characteristic length scale over which this dephasing 

becomes significant is the thermal length 𝜆𝑇 =

ℏ𝑣𝐹/(𝑘𝐵𝑇), which represents the distance an electron 

travels during the thermal timescale ℏ/(𝑘𝐵𝑇). 

In hybrid systems, the distinct dispersion relations in the 

two regions lead to different thermal length scales, 

creating spatially varying sensitivity to temperature. This 

asymmetry is particularly pronounced near the interface, 

where the quantum transmission and reflection amplitudes 

depend on the mismatch between the two dispersion 

relationships. 
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4.2 Comparison with Experimental Observations 

Our theoretical predictions can be compared with 

existing scanning tunneling microscopy (STM) 

measurements of Friedel oscillations in graphene and 

hybrid structures [36,37]. Room-temperature STM 

studies of graphene on metal substrates have reported 

oscillation wavelengths consistent with 2𝑘𝐹, but with 

amplitudes reduced by factors of 2-3 compared with 

low-temperature measurements [38]. Our theory 

predicts a suppression factor of approximately 2.5 at 

𝑇 = 300 K for typical graphene parameters, which is 

in good agreement with these observations. 

Recent experiments on graphene-hexagonal boron 

nitride (hBN) heterostructures have revealed complex 

oscillation patterns attributed to moiré superlattice 

effects [39]. Although our model does not explicitly 

include periodic modulation, hybrid formalism can be 

extended to incorporate such effects by treating the 

moiré potential as a periodic perturbation [40]. 

Low-temperature STM studies of topological 

insulator surfaces have demonstrated long-range 

Friedel oscillations with characteristic decay lengths 

[41]. Temperature-dependent measurements, although 

limited, suggest behavior consistent with our 

predicted crossover from quantum to thermal regimes 

around 𝑇/𝑇𝐹 ≈ 0.1 [42]. 

4.3 Implications for Device Applications 

Understanding temperature-dependent screening in 

hybrid systems has important implications for the 

design and operation of quantum devices. In 

graphene-based field-effect transistors, the channel 

conductivity depends on the charge distribution 

induced by the gate electrodes, which is governed by 

the screening response analyzed herein [43]. Our 

results indicate that operating temperatures 

significantly above 100 K lead to enhanced screening 

lengths and modified gate coupling, affecting device 

performance. 

For quantum computing applications using 

topological qubit architectures, the decoherence 

induced by charge fluctuations depends on the spatial 

extent of Friedel oscillations around the defects and 

interfaces [44]. Our finding that thermal length scales 

can exceed 100 nm at room temperature suggests that 

even relatively distant impurities may contribute to 

decoherence, necessitating ultra-clean samples or 

cryogenic operations. 

Thermoelectric devices based on hybrid structures may 

exploit the differential temperature dependence in these 

two regions to enhance performance [45]. The 

asymmetric thermal response can be engineered to create 

rectifying behavior for heat and charge currents. 

4.4 Relationship to Existing Literature 

Our work extends previous theoretical studies of Friedel 

oscillations in several important ways. Simon and Loss 

examined zero-temperature oscillations in pure graphene 

and derived the characteristic cos(2𝑘𝐹𝑟 + 𝜋/4)/𝑟 decay 

[46]. We generalize their analysis to finite-temperature 

and hybrid configurations, revealing new phenomena that 

are absent in homogeneous systems. 

Cheianov and Fal'ko investigated screening in graphene 

using a random phase approximation, focusing on the 

polarization function [47]. Our Green's function approach 

provides complementary insights, and naturally 

incorporates temperature effects through the Fermi-Dirac 

distribution. 

A recent work by Lopes dos Santos et al. on graphene 

bilayers demonstrated the importance of interlayer 

coupling for screening properties [48]. Although we focus 

on lateral hybrid systems, the mathematical techniques 

developed here can be adapted to vertically stacked 

heterostructures. 

In the context of topological insulators, Zhang et al. 

studied the surface state interference patterns around point 

defects [49]. Our results on temperature dependence 

complement their zero-temperature analysis and provide 

predictions that are testable in variable-temperature STM 

experiments. 

4.5 Limitations and Approximations 

Several approximations underlie our theoretical 

framework and should be acknowledged. First, we treated 

the interface as atomically sharp, neglecting the finite 

width of real interfaces where intermixing or 

reconstruction may occur over several atomic layers. This 

approximation is justified when the interface width is 

significantly smaller than the Fermi wavelength, which is 

typically satisfied in high-quality heterostructures [50]. 

Second, we employed the single-particle Green's function 

formalism, neglecting electron-electron interactions 

beyond mean-field screening. Strong correlations can 

modify the temperature dependence, particularly in low-
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density systems where the interaction parameter 𝑟𝑠 =

𝑒2/(𝜀ℏ𝑣𝐹𝑘𝐹) becomes large [51]. Extensions 

incorporating many-body effects via GW 

approximation or dynamical mean-field theory would 

be valuable future directions. 

Third, our model assumes a clean system without any 

disorders. In realistic samples, impurity scattering 

introduces a finite quasiparticle lifetime, which 

competes with thermal dephasing at a finite 

temperature [52]. The interplay between disorder and 

temperature deserves a systematic investigation. 

Fourth, we considered only elastic scattering at the 

interface, neglecting possible inelastic processes 

involving phonons or other excitations. At elevated 

temperatures, electron-phonon coupling could 

contribute to the additional damping of Friedel 

oscillations [53]. 

Finally, the numerical calculations were limited to 

specific parameter ranges. Exploring extreme regimes 

such as ultra-high temperatures or highly mismatched 

Fermi energies would require careful treatment of the 

numerical convergence and analytical 

approximations. 

4.6 Future Research Directions 

This study opens several promising avenues for future 

research. First, extending the theory to include spin-

orbit coupling and spin-dependent scattering is 

relevant for topological insulators and heavy metal 

systems, where spin-resolved STM can access 

additional information [54]. 

Second, studying oscillations around extended defects 

such as line boundaries or graphene nanoribbons 

would reveal how dimensionality affects the 

temperature dependence [55]. The interplay between 

the edge states and bulk oscillations presents rich 

physics. 

Third, incorporating dynamical screening by allowing 

the polarization function to depend on the frequency 

would capture plasmonic effects and retardation [56]. 

Finite-frequency responses are particularly important 

for understanding optical and transport measurements. 

Fourth, investigating the role of external magnetic 

fields is related to quantum Hall physics and 

cyclotron resonances [57]. Magnetic fields introduce 

additional length scales (cyclotron radius and 

magnetic length) that modify the temperature 

crossovers. 

Fifth, generalization to three-dimensional hybrid systems, 

such as thin films or multilayers, would broaden the 

applicability of our methods [58]. The dimensionality 

crossover from 2D to 3D qualitatively introduces new 

features into the oscillation patterns. 

5. Conclusion 

This theoretical study provides a comprehensive analysis 

of the temperature-dependent Friedel oscillations in Dirac 

hybrid systems. By employing finite-temperature Green's 

function techniques and linear response theory, we 

derived analytical expressions for the charge density 

response and characterized how thermal effects modify 

the oscillation amplitudes, wavelengths, and decay 

properties. 

Our key findings include: (1) thermal broadening 

introduces exponential suppression of oscillation 

amplitudes at distances comparable to the thermal length 

scale λ_T=ℏv_F/(k_B T); (2) the effective decay exponent 

increases with temperature, enhancing the spatial falloff; 

(3) interface regions exhibit particularly complex 

temperature dependence owing to the interplay between 

conventional and Dirac screening; (4) beating patterns 

near interfaces show enhanced temperature sensitivity; 

and (5) the characteristic crossover temperature scale is 

T^*≈0.1T_F, marking the transition from quantum to 

classical behavior. 

The distinct thermal length scales in the conventional and 

Dirac regions create spatially varying temperature 

sensitivities in hybrid systems, which is a unique feature 

absent in homogeneous materials. This asymmetry has 

important implications for understanding the experimental 

measurements and designing quantum devices operating 

at finite temperatures. 

Our theoretical predictions can be tested using variable-

temperature scanning tunneling microscopy for carefully 

prepared hybrid structures. A comparison with such 

experiments would validate the formalism and potentially 

reveal a new physics beyond our approximations. The 

framework developed here provides a foundation for 

understanding the charge redistribution phenomena in 

next-generation electronic materials, with applications 

ranging from quantum computing to energy conversion. 

Future extensions of this work should incorporate many-

body effects, disorder, spin-orbit coupling, and dynamical 

screening to achieve a more complete description of 

realistic systems. The interplay between the temperature, 

quantum coherence, and material properties in hybrid 

nanostructures remains a rich area for both theoretical and 
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experimental investigations. 
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