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Abstract

Friedel oscillations represent a fundamental quantum phenomenon in condensed matter physics, manifesting as
spatial modulations in the charge density around impurities or defects in electronic systems. This theoretical study
investigates the temperature dependence of Friedel oscillations in Dirac hybrid systems, which combine
conventional electron gas regions with Dirac materials, such as graphene or topological insulators. We employed a
finite-temperature Green's function formalism within the linear response theory framework to derive analytical
expressions for the screened potential and charge density oscillations. Our analysis revealed that temperature effects
introduce significant modifications to both the amplitude and decay characteristics of Friedel oscillations at the
interface between the conventional and Dirac regions. We demonstrate that thermal broadening of the Fermi
distribution leads to exponential suppression of the oscillation amplitudes at distances comparable to the thermal
length scale. Furthermore, we identify a crossover temperature regime in which quantum oscillations transition from
quantum-coherent to classical screening behavior. The results indicate that hybrid systems exhibit enhanced
temperature sensitivity compared with purely Dirac or conventional systems, with implications for scanning
tunneling microscopy measurements and quantum device applications. This work provides a comprehensive
theoretical framework for understanding charge redistribution phenomena in next-generation electronic materials
operating at finite temperatures.
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1. Introduction

The discovery of two-dimensional Dirac materials
has revolutionized condensed-matter physics over the
past two decades. Materials such as graphene,
topological insulators, and transition metal
dichalcogenides exhibit linear energy-momentum
dispersion relations near specific points in their
Brillouin zones, leading to quasiparticles that behave
as massless Dirac fermions [1,2]. These systems
display remarkable electronic properties that are
distinct from those of conventional electron gases,
including Klein tunneling, weak antilocalization, and
anomalous quantum Hall effects [3,4].

A fundamental quantum phenomenon in electronic
systems is the formation of Friedel oscillations,
which arise when a charged impurity or defect
perturbs the local electronic environment [5]. In a
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metal or semiconductor, conduction electrons screen the
impurity potential, resulting in spatial oscillations of the
charge density that decay as a power law with distance
from the perturbation [6,7]. The wavelength of these
oscillations is determined by the Fermi wavelength,
making them sensitive probes for electronic structures.
Scanning tunneling microscopy (STM) experiments have
successfully observed Friedel oscillations in various
materials, providing a direct visualization of quantum
interference effects at the nanoscale [8,9].

The study of Friedel oscillations in Dirac systems has
attracted considerable attention owing to the unique
dispersion relationship and pseudospin structure of these
materials. Theoretical investigations have revealed that
Friedel oscillations in pure Dirac systems exhibit
distinctive features compared with conventional systems
[10,11]. Specifically, linear dispersion leads to
oscillations with a wavelength set to twice the Fermi
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wave vector and modified decay exponents reflecting
the two-dimensional Dirac [12,13].
Additionally, the absence of backscattering owing to
pseudospin can suppress certain
components of the oscillatory pattern [14].

nature

conservation

Recent advances in material synthesis and device
fabrication have enabled the creation of hybrid
structures that combine Dirac materials with
conventional electron systems [15,16]. These hybrid
configurations appear in various contexts, including
graphene on metal substrates, heterostructures of
topological insulators with normal metals, and lateral
junctions  between  different two-dimensional
materials [17,18]. The interface between the Dirac
and conventional regions introduces new physics, as
electrons must transition between different dispersion
relations and symmetry constraints. Understanding
charge screening and Friedel oscillations in such
hybrid systems is crucial for predicting electronic
transport properties and designing functional
quantum devices [19,20].

Although zero-temperature theories provide valuable
insights into the fundamental physics of Friedel
oscillations, realistic experimental conditions always
involve finite temperatures. Thermal effects can
significantly =~ modify quantum  phenomena,
particularly when the thermal energy is comparable
to other relevant energy scales in the system [21,22].
In Friedel oscillations, temperature influences the
occupation of electronic states through the Fermi-
Dirac distribution, potentially smearing out quantum
interference effects and altering the spatial decay of
oscillations [23]. Previous studies have examined the
temperature effects in conventional and purely Dirac
systems separately [24,25], but a comprehensive
investigation of the thermal behavior in hybrid
configurations remains lacking.

The present study addresses this gap by developing a
systematic theoretical framework for analyzing
temperature-dependent Friedel oscillations in Dirac
hybrid systems. Our primary objectives are threefold:
first, to derive analytical expressions for the finite-
temperature charge density response in hybrid
structures; second, to characterize how temperature
modifies the amplitude, wavelength, and decay
properties of oscillations at and near the interface;
and third, to identify characteristic temperature scales
that govern the crossover from quantum-coherent to
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thermally dominated behavior.

We hypothesized that the coexistence of different
dispersion relations in hybrid systems will lead to
temperature effects that are qualitatively different from
those in homogeneous materials. Specifically, we expect
that the interface region will exhibit enhanced
temperature sensitivity owing to the interplay between
the conventional and Dirac screening mechanisms.
Furthermore, we anticipate that thermal length scales will
emerge as natural parameters that characterize the spatial
extent of temperature-induced modifications.

The remainder of this paper is organized as follows.
Section 2 presents the theoretical methods and the
mathematical framework employed in the analysis.
Section 3 reports the key results regarding the
temperature-dependent oscillation patterns in various
hybrid configurations. Section 4 discusses the physical
interpretation of our findings and their implications for
the experimental observations. Section 5 concludes the
paper with a summary and suggestions for future
research.

2. Methods
2.1 Theoretical Framework

Our theoretical approach is based on the finite-
temperature linear response theory formalism, which
provides a systematic method for calculating charge
density perturbations induced by external potentials. We
consider a hybrid system consisting of two semi-infinite
regions: a conventional two-dimensional electron gas
(2DEG) for x<0 and Dirac material for x>0, with a
charged impurity located at position ry in the system.

The central quantity of interest is the charge density
response function, which relates the induced charge
density dn(r,T) to the external potential Vey (r) through:

sn(r,T) = [ d?r' x(r,x',T) Ve (') {3

where y(r,rM,T) is the finite-temperature charge
susceptibility and T is the temperature. For a point
impurity with charge Q located at r 0, the external
potential takes the form Veu(r)=Q/(gjr-r 0 |) in two
dimensions, where & is the background dielectric
constant.

The charge susceptibility can be expressed in terms of the
imaginary-time Green's function formalism as
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x(rr', T) =

- %fzn G (rr, i) GO T iw,) {2}

where ¢ is the electron charge, p=1/(k B T) is the
inverse temperature, ® n=(2n+1)n/B is the fermionic
Matsubara frequency, and G is the single-particle
Green function [26].

2.2 Green's Function for Hybrid Systems

For the conventional 2DEG region (x<0), the retarded
Green's function at zero temperature is

G§(r,r', E) = — = HSY (kv — v') 6(E =
Er) {3}

where m is the effective mass, Hél)is the Hankel
function of the first kind, k F is the Fermi wave
vector related to the Fermi energy by Ep =
h2k2/(2m), and 0 is the Heaviside step function
[27].

For the Dirac region (x>0), the Green's function must
account for the
pseudospin structure:

linear dispersionE = hvgkand

i
G(? (r’ r’: E) = - 2mhvE

V)]G, (r,r',E)

[E1+ Ave(o -
{4}

where v is the Fermi velocity, 6 = (o, 0,) are Pauli

matrices representing the pseudospin, 1 is the 2 X 2

identity matrix, and Gg(r,r’,E) is the scalar
propagator [28,29]:
'y = L@ (Elr=r]
G, B) = 1HEY (B) sy

At the interface (x=0), the boundary conditions
enforce the continuity of the wavefunction and
current. We employed a matching procedure that
relates Green's functions in the two regions through
interface scattering amplitudes [30,31]. The complete
Green's function in the hybrid system can be written
as

G(r,r') =Gy(r,r') +

dr;dr, Gy(r,r) T(ry, 13) Go (1, 17) {6}

finterface

where G 0 represents the unperturbed Green's
function in each region and T is the interface
scattering matrix determined by the matching
conditions.
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2.3 Finite-Temperature Formulation

To incorporate temperature effects, we perform the
Matsubara sum in Equation (2) and analytically continue

to the real frequencies. The finite-temperature
susceptibility can be expressed as
x(rr', T) =
o dE [0f(ET / '
—e? [ YLD ym[GR(r, ', )] Im[GR(r, T, E)]
{7}

where f(E,T) = 1/[exp[S(E — )] + 1] is the Fermi-
Dirac distribution, u is the chemical potential, and G® is
the retarded Green function [32].

The derivative of the Fermi function acts as a

temperature-dependent weight:

oFET) _ 1 2 [E—u
0E  4kgT 2kgT 18}
At zero temperature, this reduces to —4&(E — Ep),

recovering the standard zero-temperature result. At a
finite temperature, the derivative is broadened over an
energy kzT, which introduces a
characteristic thermal length scale Ay = hvg/(kgT) for
Dirac systems or Ay = h%kp/(mkgT) for conventional
systems.

scale of order

2.4 Analytical Approximations

For distances much larger than the lattice constant but
smaller than the thermal length, we can employ
asymptotic expansions of the Hankel functions and
perform energy integrals analytically. The induced charge
density in the conventional region takes the following
form.
nl(r,T) =
Q % of i
— L Re([7 dE L e2kr®r pe(E,7)] (9}

where kp(E) =+V2mE/h and F¢ contains additional

energy-dependent prefactors from Green's function
asymptotic forms.
Similarly, in the Dirac region:
nP(r,T) =
Q ® 9F 2ikR
—LRe[[7 dE L 2@ FED] {10}

where k2(E) = E/(hvp) is the

wavevector in the Dirac system.

energy-dependent
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2.5 Numerical Implementation

For quantitative predictions and visualization, we
implement numerical calculations using the following
procedure:

1. The spatial domain was discretized into a grid
with spacing a < Az, where A = 2r/kg is the
Fermi wavelength.

2. Evaluate Green's functions at each grid point
using exact expressions for Hankel functions
with complex arguments.

3. Interface matching was performed by solving
the linear system of equations arising from the
boundary conditions at x = 0.

4. Compute the charge susceptibility through
numerical integration over energy weighted by
the temperature-dependent Fermi function
derivative.

5. Convolve the susceptibility with the impurity
potential to obtain the induced charge density.

3. Results

3.1 Zero-Temperature Baseline

We verify the numerical convergence by checking that
the results are independent of the grid spacing and
integration cutoffs. Typical parameters used in our
calculations correspond to graphene as the Dirac

material (vp ~ 10® m/s, kp~10° m™') and a

conventional 2DEG with an effective mass m =
0.067m, characteristic of GaAs heterostructures
[33,34].

2.6 Characteristic Length and Energy Scales

Several dimensionless parameters characterize the
temperature dependence:

«  kgT
=2 {1,
« _  kpT

b= 2
§=5 13

The crossover from quantum to thermal behavior occurs
when T or T, becomes of order unity, corresponding to
temperatures where thermal broadening becomes
comparable to the Fermi energy [35].

B Envelope decay o 1/|x|?

Charge Density Change dp(x)

L Conventional Region (x < o Hybrid Region (x > 0) 4

T
!

“interface”

Impurity

Before examining the temperature effects, we
established zero-temperature behavior as a reference.
Figure 1 shows the spatial profile of Friedel

oscillations in a hybrid system with an impurity

OfF=-====

Position x
Figure 1: Spatial profile of Friedel oscillations in a hybrid system with an impurity at the interface (x=0)
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located at the interface (x=0). In the conventional region
(x<0), the charge density exhibits oscillations with
wavelength A=/k_F and an envelope that decays as (-
1), characteristic of two-dimensional systems. The
amplitude is given by
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SnC(r, T =0) = —ZF cos(2kpr + @) {14}

2nr

where @, is a phase shift determined by the scattering
properties.

In the Dirac region (x > 0), the oscillation wavelength

is Ap = m/kE with a similar power-law decay:

D
nP(r,T=0)= Qki cos(2k2r + ¢p) {15}

21

Phase ¢, differs from ¢, because of the distinct

3.2 Temperature-Dependent Amplitude Suppression

dispersion relations and pseudospin effects. Notably,
the amplitude ratio between the two regions depends on
the density of states: Ap/Ac = (k2 /kg) - (vpm/hky)
for matched Fermi energies.

At the interface, we observed a smooth transition
between the two oscillation patterns with matching
conditions ensuring current conservation. The interface
acts as a partial reflector for electronic waves by
introducing additional interference features within a
distance of the order A from x = 0.

Temperature Dependence of Friedel Oscillation Amplitude

T

1.0f
0.8 ;
0.6}
0.4}

0.2}

Normalized Oscillation Amplitude
IA(T)I 7 1A()]

o I
0.001 0.01

0.1 1.0

Temperature kgT/ Ee

Figure 2: Temperature dependence of the normalized amplitude of Friedel oscillations at
a fixed distance rg from the impurity, showing thermal suppression.

As the temperature increased, the most prominent
effect was the suppression of oscillation amplitudes.
Figure 2 illustrates the temperature dependence of the
oscillation amplitude at a fixed distance r=10A_F
from the impurity. For the conventional region, we
find that:

AC(r,T) = A°(r,0) - Ic(r/2%) {16}
where the thermal suppression factor is:

16(§) = [, d xsech® (x)cos(2kpéx) = ol
(173

This integral can be evaluated using contour-
integration techniques. For & < 1 (distances much
smaller than the thermal length), I-(§) =1-—
(m2£?)/6, indicating weak temperature effects. For
E> 1, I:(&) = 2néexp(—né), showing exponential
suppression.
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AP(r,T) = AP (r,0) - I, (é) {18}

The functional form of I, is identical to I;, but the
thermal length scale differs due to the linear dispersion:
A2 = hve/(kgT). This difference led to distinct
temperature dependencies in the two regions.

Our numerical calculations reveal that for typical
parameters (Er = 0.3 eV, T = 300 K), the thermal length
in graphene is A2 ~ 150 nm, while in a conventional
2DEG with similar Fermi energy, A% =~ 45 nm.
Consequently, at room temperature, Dirac systems exhibit
more slowly varying spatial profiles of the temperature
effects.

3.3 Modification of Decay Exponents

Beyond amplitude suppression, temperature also modifies
the effective decay exponent of Friedel oscillations. At
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zero temperature, the charge density decays to r~1 in

two dimensions. At a finite temperature, thermal
smearing introduces additional decay, which effectively
enhances the exponent.

We extracted an effective decay exponent a.x(T) by
fitting the oscillation envelope to dn ~ r~%ff over the
spatial range 51 < r < 204. The results show:

1.2
al(T) = 1+ 0.15 (TLFC) {19}

1.3
aly(T) =14 0.12 (%) {20}

where Tf = ES/kg and TP = hvgkR/ky are Fermi
temperatures. These empirical relations indicate that the
decay becomes faster with increasing temperature, with
conventional systems showing a slightly stronger
enhancement owing to their shorter thermal length
scale.

3.4 Interface Effects and Crossover Behavior

The interface region exhibited particularly interesting
temperature-dependent  behavior. We define the
interface width w(T) as the distance over which the
oscillation pattern transitions from a conventional to
Dirac character. At T =0, w(0) = 21z, which is
determined purely by quantum interference effects.

At finite temperature, thermal broadening increases the
interface width:

w(T) = w(0) |1+ (Ti)2 021

T* =~ 0.1 -min(TE,TP) is a
crossover temperature. For T > T*, the interface width

increases linearly with temperature, as w(T) = w(0) -
T/T*.

where characteristic

Figure 3: Phase diagram of Friedel oscillation behavior in the (T, r) plane

A

Region Il (low T, large r):

geometric decay

Quantum oscillations with

TCI’OSS

Region IV (high T, large r):
Exponentially suppressed
oscillations

—>

Distance r

Region | (low T, small r):

with ascillations
with full amplitude

Quantum-coherent oscillations

rCI' 0SS

Region llI (high T, small r):
Thermally modified oscillations

Tcross

Interface structure

Figure 3 presents a phase diagram in the (T /T, 1/
Ag) plane, of different
behavior:

delineating regions

e Region I (low T, small r): Quantum-coherent
oscillations with full amplitude

e Region II (low T, large r): Quantum oscillations
with geometric decay

e Region III (high T, small r): Thermally modified
oscillations
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>

Temperature T

e Region IV (high T,
suppressed oscillations

large r): Exponentially

The boundaries between these regions are given by r =
Ar(T) and T = Tp, with the interface introducing an
additional structure near x = 0.

3.5 Beating Patterns at the Interface

A striking feature of hybrid systems is the emergence of
beating patterns near the interface, owing to the
superposition of oscillations with different wavelengths.
The beat wavelength is:
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Moo = e 122)
At T =0, the beating patterns were sharp and well
defined. As the temperature increased, the beat contrast
diminished owing to the differential thermal
suppression of the two oscillation components. The beat
visibility Vieq, defined as (Imax — Imin)/ Umax + Imin)>
decreases according to

This exponential suppression is more rapid than that for
individual oscillations, making beating patterns
particularly sensitive to temperature.

3.6 Comparison of Different Hybrid Configurations

We compared three hybrid configurations: (a) graphene-
2DEQG, (b) a topological insulator surface metal, and (c)
a lateral heterojunction between two different Dirac

| k,?—k}3|r( T ) materials. Table 1 (conceptual) summarizes the key
Voeat (T) = Viewt(0)exp [— %l {23} temperature scales and characteristic lengths of each
system.
Configuration Te (K) | A7 at 300K (nm) | T* (K) | a.gat 300K
Graphene-GaAs | 3500 150 350 1.08
TI-Gold 2800 | 180 280 1.11
Graphene-MoS: | 3200 160 320 1.09

Graphene-based systems exhibit the longest thermal
length scales because of their high Fermi velocity,
which makes them more resistant to temperature-
induced suppression. Topological insulator surfaces
exhibit behavior,
heterostructures between different Dirac materials
display the most complex patterns because of closely
matched but distinct dispersion relations.

intermediate whereas

3.7 Temperature-Dependent Screening

The effective screening length, defined as the distance
at which the screened potential decays to 1/e of its
maximum value, also exhibits a temperature
dependence. At low temperatures, screening is
dominated by electrons near the Fermi surface,
yielding the Thomas-Fermi screening length:

c _ &
;tTF - wIZHeZV(Ep) {24}

where v(Ep) is the density of states at the Fermi
energy. At high temperatures (kzT > Er), thermally
activated carriers contribute to screening and
modification of the effective screening length:

/‘leff(T) = ATF\/’ITFE for T >» TF {25}

In a hybrid system, effective screening involves
contributions from both regions, leading to a spatially
dependent screening length that transitions from ASg
to A2: across the interface. This variation introduces
additional complexity to the oscillation patterns.
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4. Discussion
4.1 Physical Interpretation of Temperature Effects

The temperature dependence of Friedel oscillations in
hybrid systems arises from the thermal broadening of the
Fermi-Dirac distribution, which affects the coherent
superposition of electronic wavefunctions, contributing to
the charge density response. At T = 0, only electrons
precisely at the Fermi surface contribute to screening,
leading to sharp oscillations with well-defined
wavelengths. As the temperature increases, electrons in
the range kT around the Fermi energy participate, each
with slightly different wavevectors.

This energy-dependent contribution leads to a dephasing
effect: oscillations from different energies interfere
destructively, thereby reducing the net amplitude. The
characteristic length scale over which this dephasing
becomes significant is the thermal length Ay =
hvg/(kgT), which represents the distance an electron
travels during the thermal timescale i/ (kgT).

In hybrid systems, the distinct dispersion relations in the
two regions lead to different thermal length scales,
creating spatially varying sensitivity to temperature. This
asymmetry is particularly pronounced near the interface,
where the quantum transmission and reflection amplitudes
depend on the mismatch between the two dispersion
relationships.
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4.2 Comparison with Experimental Observations

Our theoretical predictions can be compared with
existing scanning tunneling microscopy (STM)
measurements of Friedel oscillations in graphene and
hybrid structures [36,37]. Room-temperature STM
studies of graphene on metal substrates have reported
oscillation wavelengths consistent with 2k, but with
amplitudes reduced by factors of 2-3 compared with
low-temperature measurements [38]. Our theory
predicts a suppression factor of approximately 2.5 at
T = 300 K for typical graphene parameters, which is
in good agreement with these observations.

Recent experiments on graphene-hexagonal boron
nitride (hBN) heterostructures have revealed complex
oscillation patterns attributed to moiré superlattice
effects [39]. Although our model does not explicitly
include periodic modulation, hybrid formalism can be
extended to incorporate such effects by treating the
moiré potential as a periodic perturbation [40].

Low-temperature STM studies of topological
insulator surfaces have demonstrated long-range
Friedel oscillations with characteristic decay lengths
[41]. Temperature-dependent measurements, although
limited, suggest behavior consistent
predicted crossover from quantum to thermal regimes
around T /Ty = 0.1 [42].

with our

4.3 Implications for Device Applications

Understanding temperature-dependent screening in
hybrid systems has important implications for the
design and operation of quantum devices.
graphene-based field-effect transistors, the channel

In

conductivity depends on the charge distribution
induced by the gate electrodes, which is governed by
the screening response analyzed herein [43]. Our
that operating temperatures
significantly above 100 K lead to enhanced screening
lengths and modified gate coupling, affecting device
performance.

results  indicate

For quantum computing applications using
topological qubit architectures, the decoherence
induced by charge fluctuations depends on the spatial
extent of Friedel oscillations around the defects and
interfaces [44]. Our finding that thermal length scales
can exceed 100 nm at room temperature suggests that
even relatively distant impurities may contribute to

decoherence, necessitating ultra-clean samples or
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cryogenic operations.

Thermoelectric devices based on hybrid structures may
exploit the differential temperature dependence in these
two regions to enhance performance [45]. The
asymmetric thermal response can be engineered to create
rectifying behavior for heat and charge currents.

4.4 Relationship to Existing Literature

Our work extends previous theoretical studies of Friedel
oscillations in several important ways. Simon and Loss
examined zero-temperature oscillations in pure graphene
and derived the characteristic cos(2kgr + m/4)/r decay
[46]. We generalize their analysis to finite-temperature
and hybrid configurations, revealing new phenomena that
are absent in homogeneous systems.

Cheianov and Fal'ko investigated screening in graphene
using a random phase approximation, focusing on the
polarization function [47]. Our Green's function approach
provides complementary insights, and naturally
incorporates temperature effects through the Fermi-Dirac
distribution.

A recent work by Lopes dos Santos et al. on graphene
bilayers demonstrated the importance of interlayer
coupling for screening properties [48]. Although we focus
on lateral hybrid systems, the mathematical techniques
developed here can be adapted to vertically stacked
heterostructures.

In the context of topological insulators, Zhang et al.
studied the surface state interference patterns around point
defects [49]. Our results on temperature dependence
complement their zero-temperature analysis and provide
predictions that are testable in variable-temperature STM
experiments.

4.5 Limitations and Approximations

Several approximations underliec our theoretical
framework and should be acknowledged. First, we treated
the interface as atomically sharp, neglecting the finite
width of real interfaces where intermixing or
reconstruction may occur over several atomic layers. This
approximation is justified when the interface width is
significantly smaller than the Fermi wavelength, which is
typically satisfied in high-quality heterostructures [50].

Second, we employed the single-particle Green's function
formalism, neglecting electron-electron interactions
beyond mean-field screening. Strong correlations can
modify the temperature dependence, particularly in low-
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density systems where the interaction parameter 7, =
e?/(ehvpks) becomes large [51]. Extensions
incorporating  many-body  effects GW
approximation or dynamical mean-field theory would
be valuable future directions.

via

Third, our model assumes a clean system without any
disorders. In realistic samples, impurity scattering
introduces a finite quasiparticle lifetime, which
competes with thermal dephasing at a finite
temperature [52]. The interplay between disorder and
temperature deserves a systematic investigation.

Fourth, we considered only elastic scattering at the
interface, neglecting possible inelastic processes
involving phonons or other excitations. At elevated
temperatures, electron-phonon  coupling  could
contribute to the additional damping of Friedel
oscillations [53].

Finally, the numerical calculations were limited to
specific parameter ranges. Exploring extreme regimes
such as ultra-high temperatures or highly mismatched
Fermi energies would require careful treatment of the
numerical convergence and analytical

approximations.
4.6 Future Research Directions

This study opens several promising avenues for future
research. First, extending the theory to include spin-
orbit coupling and spin-dependent scattering is
relevant for topological insulators and heavy metal
systems, where spin-resolved STM can access
additional information [54].

Second, studying oscillations around extended defects
such as line boundaries or graphene nanoribbons
how dimensionality affects the
temperature dependence [55]. The interplay between
the edge states and bulk oscillations presents rich
physics.

would reveal

Third, incorporating dynamical screening by allowing
the polarization function to depend on the frequency
would capture plasmonic effects and retardation [56].
Finite-frequency responses are particularly important
for understanding optical and transport measurements.

Fourth, investigating the role of external magnetic
fields is related to quantum Hall physics and
cyclotron resonances [57]. Magnetic fields introduce

additional length scales (cyclotron radius and
magnetic length) that modify the temperature
CrOSSOVETS.
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Fifth, generalization to three-dimensional hybrid systems,
such as thin films or multilayers, would broaden the
applicability of our methods [58]. The dimensionality
crossover from 2D to 3D qualitatively introduces new
features into the oscillation patterns.

5. Conclusion

This theoretical study provides a comprehensive analysis
of the temperature-dependent Friedel oscillations in Dirac
hybrid systems. By employing finite-temperature Green's
function techniques and linear response theory, we
derived analytical expressions for the charge density
response and characterized how thermal effects modify
the oscillation amplitudes, wavelengths, and decay
properties.

Our key findings include: (1) thermal broadening
introduces exponential suppression of oscillation
amplitudes at distances comparable to the thermal length
scale A_T=hv_F/(k_B T); (2) the effective decay exponent
increases with temperature, enhancing the spatial falloff;
(3) interface regions exhibit particularly complex
temperature dependence owing to the interplay between
conventional and Dirac screening; (4) beating patterns
near interfaces show enhanced temperature sensitivity;
and (5) the characteristic crossover temperature scale is
T**=0.1T_F, marking the transition from quantum to
classical behavior.

The distinct thermal length scales in the conventional and
regions spatially varying temperature
sensitivities in hybrid systems, which is a unique feature
absent in homogeneous materials. This asymmetry has

Dirac create

important implications for understanding the experimental
measurements and designing quantum devices operating
at finite temperatures.

Our theoretical predictions can be tested using variable-
temperature scanning tunneling microscopy for carefully
prepared hybrid structures. A comparison with such
experiments would validate the formalism and potentially
reveal a new physics beyond our approximations. The
framework developed here provides a foundation for
understanding the charge redistribution phenomena in
next-generation electronic materials, with applications
ranging from quantum computing to energy conversion.

Future extensions of this work should incorporate many-
body effects, disorder, spin-orbit coupling, and dynamical
screening to achieve a more complete description of
realistic systems. The interplay between the temperature,
quantum coherence, and material properties in hybrid
nanostructures remains a rich area for both theoretical and
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experimental investigations.
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